A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope

نویسنده

  • Mario Lanza
چکیده

Metal-Insulator-Metal (MIM) structures have raised as the most promising configuration for next generation information storage, leading to great performance and fabrication-friendly Resistive Random Access Memories (RRAM). In these cells, the memory concept is no more based on the charge storage, but on tuning the electrical resistance of the insulating layer by applying electrical stresses to reach a high resistive state (HRS or "0") and a low resistive state (LRS or "1"), which makes the memory point. Some high-k dielectrics show this unusual property and in the last years high-k based RRAM have been extensively analyzed, especially at the device level. However, as resistance switching (in the most promising cells) is a local phenomenon that takes place in areas of ~100 nm², the use of characterization tools with high lateral spatial resolution is necessary. In this paper the status of resistive switching in high-k materials is reviewed from a nanoscale point of view by means of conductive atomic force microscope analyses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth

Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switchi...

متن کامل

Writing and Low-Temperature Characterization of Oxide Nanostructures

Oxide nanoelectronics is a rapidly growing field which seeks to develop novel materials with multifunctional behavior at nanoscale dimensions. Oxide interfaces exhibit a wide range of properties that can be controlled include conduction, piezoelectric behavior, ferromagnetism, superconductivity and nonlinear optical properties. Recently, methods for controlling these properties at extreme nanos...

متن کامل

Resistive switching in single epitaxial ZnO nanoislands.

Resistive memory is one of the most promising candidates for next-generation nonvolatile memory technology due to its variety of advantages, such as simple structure and low-power consumption. Bipolar resistive switching behavior was observed in epitaxial ZnO nanoislands with base diameters and heights ranging around 30 and 40 nm, respectively. All four different states (initial, electroformed,...

متن کامل

Enhanced resistive switching phenomena using low-positive-voltage format and self-compliance IrOx/GdOx/W cross-point memories

Enhanced resistive switching phenomena of IrOx/GdOx/W cross-point memory devices have been observed as compared to the via-hole devices. The as-deposited Gd2O3 films with a thickness of approximately 15 nm show polycrystalline that is observed using high-resolution transmission electron microscope. Via-hole memory device shows bipolar resistive switching phenomena with a large formation voltage...

متن کامل

Self-compliance-improved resistive switching using Ir/TaOx/W cross-point memory

Resistive switching properties of a self-compliance resistive random access memory device in cross-point architecture with a simple stack structure of Ir/TaOx/W have been investigated. A transmission electron microscope and atomic force microscope were used to observe the film properties and morphology of the stack. The device has shown excellent switching cycle uniformity with a small operatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014